十一2010

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

T.B.C. : Q-OEBA-K-NBU

TEST BOOKLET SERIES

Serial Nº 300169

TEST BOOKLET

MATHEMATICS

Time Allowed : Two Hours and Thirty Minutes

Maximum Marks : 300

INSTRUCTIONS

- 1. IMMEDIATELY AFTER THE COMMENCEMENT OF THE EXAMINATION, YOU SHOULD CHECK THAT THIS TEST BOOKLET DOES **NOT** HAVE ANY UNPRINTED OR TORN OR MISSING PAGES OR ITEMS, ETC. IF SO, GET IT REPLACED BY A COMPLETE TEST BOOKLET.
- 2. ENCODE CLEARLY THE TEST BOOKLET SERIES A, B, C OR D AS THE CASE MAY BE IN THE APPROPRIATE PLACE IN THE ANSWER SHEET.
- You have to enter your Roll Number on the Test Booklet in the Box provided alongside. DO NOT write anything else on the Test Booklet.
- 4. This Test Booklet contains 120 items (questions). Each item is printed both in Hindi and English. Each item comprises four responses (answers). You will select the response which you want to mark on the Answer Sheet. In case you feel that there is more than one correct response, mark the response which you consider the best. In any case, choose ONLY ONE response for each item.
- 5. You have to mark all your responses **ONLY** on the separate Answer Sheet provided. See directions in the Answer Sheet.
- 6. All items carry equal marks.
- 7. Before you proceed to mark in the Answer Sheet the response to various items in the Test Booklet, you have to fill in some particulars in the Answer Sheet as per instructions sent to you with your Admission Certificate.
- 8. After you have completed filling in all your responses on the Answer Sheet and the examination has concluded, you should hand over to the Invigilator *only the Answer Sheet*. You are permitted to take away with you the Test Booklet.
- 9. Sheets for rough work are appended in the Test Booklet at the end.


10. Penalty for wrong answers :

THERE WILL BE PENALTY FOR WRONG ANSWERS MARKED BY A CANDIDATE IN THE OBJECTIVE TYPE QUESTION PAPERS.

- (i) There are four alternatives for the answer to every question. For each question for which a wrong answer has been given by the candidate, **one-third** (0.33) of the marks assigned to that question will be deducted as penalty.
- (ii) If a candidate gives more than one answer, it will be treated as a wrong answer even if one of the given answers happens to be correct and there will be same penalty as above to that question.
- (iii) If a question is left blank, i.e., no answer is given by the candidate, there will be no penalty for that question.

DO NOT OPEN THIS TEST BOOKLET UNTIL YOU ARE ASKED TO DO SO

ध्यान दें : अनुदेशों का हिन्दी रूपान्तर इस पुस्तिका के पिछले पृष्ठ पर छपा है ।

	7	
	a b c	Directions : For the next 3 (three) questions to
1.	If $\begin{vmatrix} l & m & n \end{vmatrix} = 2$, then what is the value	follow :
	-, -,	Consider the following lists :
	pqr	Each item under List I is associated with one
	6a 3b 15c	or more items under List II.
	of the determinant $2l m 5n$?	List I List II
	2p q 5r	(Function) (Property)
	(a) 10 ·	A. sin x 1. Periodic function .
5	(b) 20	B. cos x 2. Non-periodic function
	(c) 40 (d) 60	C. tan x 3. Continuous at every point on $(-\infty, \infty)$
2.	Let X be the set of all graduates in India.	4. Discontinuous function
	Elements x and y in X are said to be related if	5. Differentiable at every
	they are graduates of the same university. Which one of the following statements is	point on $(-\infty, \infty)$
	correct ?	6. Not differentiable at every
	(a) Relation is symmetric and transitive	point on $(-\infty, \infty)$
	only.	7. has period π
	(b) Relation is reflexive and transitive only.	8. has period 2π
	(c) Relation is reflexive and symmetric only.	9. increases on $(0, \pi/2)$
	(d) Relation is reflexive, symmetric and	10. decreases on $(0, \pi/2)$
	transitive.	11. increases on $(\pi/2, \pi)$
3.	If $x^2 + y^2 = 1$, then what is $\frac{1 + x + iy}{1 + x - iy}$	12. decreases on $(\pi/2, \pi)$
	equal to ?	5. A is associated with
	(a) $x - iy$	(a) 1, 3, 5, 8, 9, 12
	(b) $x + iy$	(b) 2, 4, 6, 8, 10, 11
	(c) $2x$	(c) 1, 3, 5, 7, 10, 11
5.	(d) $-2iy$	(d) None of the above
4.	Consider the following statements :	
	1. For any three vectors \vec{a} , \vec{b} , \vec{c} ;	6. B is associated with
	$\vec{a} \cdot \{(\vec{b} + \vec{c}) \times (\vec{a} + \vec{b} + \vec{c})\} = 0$	(a) $2, 3, 5, 8, 9, 12$
		(b) 1, 3, 5, 8, 10, 12
	2. For any three coplanar unit vectors	(c) 1, 3, 5, 8, 9, 12
	\vec{d} , \vec{e} , \vec{f} ; (\vec{d} x \vec{e}). \vec{f} = 1	(d) None of the above
	Which of the statements given above is/are	7. C is associated with
	correct?	(a) 1, 4, 6, 7, 9, 11
	(a) 1 only(b) 2 only	(b) 2, 4, 6, 8, 9
	(c) Both 1 and 2	(c) 1, 4, 6, 7, 9
	(d) Neither 1 nor 2	(d) None of the above
Q-0E	BA-K-NBU (2 –	A)

•			1.22 B
١	a b c	निर्देश	: अगले 3 (तीन) प्रश्नों के लिए :
1.	यदि l m n' = 2, तो		निम्नलिखित सूचियों पर विचार कीजिए :
	p q r 6a 3b 15c		सूची I में दिया हुआ प्रत्येक प्रश्नांश सूची II के एक प्रश्नांश या एकाधिक प्रश्नांशों से सम्बन्धित है ।
	सारणिक 2 <i>l</i> m 5n का मान क्या है ? 2p q 5r		सूची I सूची II (फलन) (गुण)
		1.1947	A. sin x 1. आवर्ती फलन
1	(a) 10		B. cos x 2. अनावर्ती फलन
	(b) 20 (c) 40		C. tan x 3. (-∞,∞) के प्रत्येक बिन्दु पर संतत
	(d) 60		4. असंतत फलन
2.	मान लीजिए कि भारत में सभी स्नातकों का समुच्चय X है ।		5. (−∞, ∞) के प्रत्येक बिन्दु पर अवकलनीय
	X के सदस्य x और y सम्बन्धित कहे जाते हैं यदि वे उसी विश्वविद्यालय से स्नातक हैं । निम्नलिखित में से कौन सा		6. (–∞, ∞) के प्रत्येक बिन्दु पर अवकलनीय नहीं
	कथन सत्य है ?		7. आवर्तेक π वाला है
	(a) सम्बन्ध केवल सममित और संक्रामक है ।	A - B por PC	8. आवर्तक 2π वाला है
65	(b) सम्बन्ध केवल स्वतुल्य और संक्रामक है ।		9. (0, π/2) पर वर्धमान है
	(c) सम्बन्ध केवल स्वतुल्य और सममित है ।	2	10. (0, π/2) पर हासमान है
	(d) सम्बन्ध स्वतुल्य, सममित और संक्रामक है ।	-	11. (π/2, π) पर वर्धमान है
ä			12. (π/2, π) पर हासमान है
3.	यदि $x^2 + y^2 = 1$, तो $\frac{1 + x + iy}{1 + x - iy}$ का मान क्या है ? (a) $x - iy$	5.	A किस/किन से सम्बन्धित है ?
	(b) $x + iy$		(a) 1, 3, 5, 8, 9, 12
	(c) 2x		(b) 2, 4, 6, 8, 10, 11
	(d) $-2iy$		(c) 1, 3, 5, 7, 10, 11
	। निम्नलिखित कथनों पर विचार कीजिए :	40 14	(d) उपरिलिखित में से कोई नहीं
4.		6.	B किस/किन से सम्बन्धित है ?
			(a) 2, 3, 5, 8, 9, 12
	$\vec{a} \cdot \{(\vec{b} + \vec{c}) \times (\vec{a} + \vec{b} + \vec{c})\} = 0$		(b) 1, 3, 5, 8, 10, 12
	2. किन्हीं तीन समतलीय मात्रक सदिशों	3	(c) 1, 3, 5, 8, 9, 12
.	d, e, f के लिए ; (d × e). f = 1	e.	(d) उपरिलिखित में से कोई नहीं
nç	उपरिलिखित कथनों में से कौन सा/से सही है/हैं ?	7.	C किस/किन से सम्बन्धित है ?
	(a) केवल 1		(a) 1, 4, 6, 7, 9, 11
	(b) केवल 2		(b) 2, 4, 6, 8, 9
	(c) 1 और 2 दोनों		(c) 1, 4, 6, 7, 9
5	(d) न तो 1 और न ही 2		(d) उपरिलिखित में से कोई नहीं
	а. А.	•	

(3 – A)

If p and q are positive integers, then which | 12. 8. A circle is drawn with the two foci of an one of the following equations has $p - \sqrt{q}$ as ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the end of the one of its roots ? diameter. What is the equation to the circle ? (a) $x^2 - 2px - (p^2 - q) = 0$ (a) $x^2 + y^2 = a^2 + b^2$ (b) $x^2 - 2px + (p^2 - q) = 0$ (b) $x^2 + y^2 = a^2 - b^2$ (c) $x^2 + 2px - (p^2 - q) = 0$ (c) $x^2 + y^2 = 2(a^2 + b^2)$ (d) $x^2 + y^2 = 2(a^2 - b^2)$ (d) $x^2 + 2px + (p^2 - q) = 0$ What is the image of the point (1, 2) on the 13. Given two squares of sides x and y such that line 3x + 4y - 1 = 0? $y = x + x^2$. What is the rate of change of area of the second square with respect to the area (a) $\left(-\frac{7}{5}, -\frac{6}{5}\right)$ of the first square ? $1 + 3x + 2x^2$ (a) (b) $\left(\frac{7}{8}, \frac{1}{2}\right)$ $1 + 2x + 3x^2$ (b) (c) $1 - 2x + 3x^2$ (c) $\left(\frac{7}{8}, -\frac{1}{2}\right)$ (d) $1 - 2x - 3x^2$ (d) $\left(-\frac{7}{5}, \frac{1}{2}\right)$ 10. The planes' px + 2y + 2z - 3 = 02x - y + z + 2 = 0 intersect at an angle 14. If the product of the roots of the equation $\pi/4$. What is the value of p^2 ? $x^2 - 5x + k = 15$ is -3, then what is the value of k ? 24 (a) 12 (a) 12 (b) (b) 15 (c) 6 16 (c)(d) 3 (d) 18 Consider the following statements : 11. The growth of a quantity N(t) at any 15. instant t is given by $\frac{dN(t)}{dt} = \alpha N(t)$. Given Every function has a primitive. 1. 2. A primitive of a function is unique. that $N(t) = ce^{kt}$, c is a constant. What is Which of the statements given above is/are the value of α ? correct ? (a) c (a) 1 only (b) k (b) 2 only (c) c + k (c)Both 1 and 2 (d) $\mathbf{c} - \mathbf{k}$ (d) Neither 1 nor 2

Q-OEBA-K-NBU

(4 - A)

i 5	<i>y</i>		
8.	, यदि p और q धनात्मक पूर्णांक हैं, तो निम्नलिखित समीकरणों में से किसका एक मूल $p - \sqrt{q}$ है ? (a) $x^2 - 2px - (p^2 - q) = 0$ (b) $x^2 - 2px + (p^2 - q) = 0$ (c) $x^2 + 2px - (p^2 - q) = 0$ (d) $x^2 + 2px + (p^2 - q) = 0$	12.	दीर्घवृत्त $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ की दोनों नाभियों को व्यास के अन्त बिन्दु लेकर एक वृत्त खींचा गया है । वृत्त का समीकरण क्या है ? (a) $x^2 + y^2 = a^2 + b^2$ (b) $x^2 + y^2 = a^2 - b^2$ (c) $x^2 + y^2 = 2(a^2 + b^2)$
9.	यदि भुजाओं x और y वाले दो वर्ग इस प्रकार हैं कि y = x + x^2 , तो दूसरे वर्ग के क्षेत्रफल के परिवर्तन की दर पहले वर्ग के क्षेत्रफल के सापेक्ष क्या है ?	13.	(d) $x^2 + y^2 = 2 (a^2 - b^2)$ रेखा $3x + 4y - 1 = 0$ पर बिन्दु (1, 2) का बिम्ब क्या है ?
	(a) $1 + 3x + 2x^2$		(a) $\left(-\frac{7}{5}, -\frac{6}{5}\right)$
	(b) $1 + 2x + 3x^2$ (c) $1 - 2x + 3x^2$		(b) $\left(\frac{7}{8}, \frac{1}{2}\right)$
	(d) $1 - 2x - 3x^2$		(c) $\left(\frac{7}{8}, -\frac{1}{2}\right)$
10.	समतल $px + 2y + 2z - 3 = 0$ और $2x - y + z + 2 = 0$ का प्रतिच्छेद-कोण $\pi/4$ है । p^2 का मान क्या है ?		(d) $\left(-\frac{7}{5}, \frac{1}{2}\right)$
	(a) 24	14.	यदि समीकरण x ² – 5x + k = 15 के मूलों का गुणनफल – 3 है, तो k का मान क्या है ?
	(b) 12		(a) 12
12	(c) 6	16	(b) 15
	(d) 3		(c) 16 (d) 18
11.	किसी क्षण t पर संख्या N(t) की वृद्धि $\frac{dN(t)}{dt} = \alpha N(t)$	15.	निम्नलिखित कथनों पर विचार कीजिए :
	द्वारा दी हुई है । यदि दिया हुआ है कि $N(t) = ce^{kt}$, जहाँ c		 प्रत्येक फलन का एक पूर्वग है। जिन्दी स्वाप्त का रहे के कि के के प्राप्त के प
	एक अचर है, तो α का मान क्या है ?		 किसी फलन का पूर्वग अद्वितीय होता है । उपरिलिखित कथनों में से कौन सा/से सही है/हैं ?
	(a) c	0	(a) केवल 1
	(b) k		(b) केवल 2
	(c) c + k		(c) 1 और 2 दोनों
2 2	(d) c – k		(d) न तो 1 और न ही 2

(5 - A)

16.	If $A = \{a, b, c, d\}$, then what is the number of	19. Consider the following statements :
	proper subsets of A ?	1. The probability that there are 53 Sundays
	(a) 16	in a leap year is twice the probability that
	(4) 10	there are 53 Sundays in a non-leap year.
	(b) 15	2. The probability that there are 5 Mondays
		in the month of March is thrice the
	(c) 14	probability that there are 5 Mondays in the month of April.
	(d) 12	Which of the statements given above is/are
	(a) 12	correct ?
		(a) 1 only
17.	What is the number of three-digit odd	See .
	numbers formed by using the digits 1, 2, 3, 4,	(b) 2 only
	5, 6 if repetition of digits is allowed ?	(c) Both 1 and 2
	(a) 60	(d) Neither 1 nor 2
		20. Consider the following statements :
	(b) 108	1. If $A' = A$, then A is a singular matrix,
		where A' is the transpose of A.
	(c) 120	2. If A is a square matrix such that $A^3 = I$,
	(d) 216	then A is non-singular.
	*	Which of the statements given above is/are
		correct ?
18.	Let $A = \begin{pmatrix} 5 & 6 & 1 \end{pmatrix}$ Let there with a	(a) 1 only
10.	Let A = $\begin{pmatrix} 5 & 6 & 1 \\ 2 & -1 & 5 \end{pmatrix}$. Let there exist a	(b) 2 only
	51/20- MI	(c) Both 1 and 2
	matrix B such that $AB = \begin{pmatrix} 35 & 49 \\ 29 & 13 \end{pmatrix}$. What is	(d) Neither 1 nor 2
	$(5 \ 1 \ 4)$	the q^{th} term, then what is the $(p + q)^{th}$ term equal to ?
*	(a) $\begin{pmatrix} 5 & 1 & 4 \\ 2 & 6 & 3 \end{pmatrix}$	
	$(2 \ 6 \ 3)^{-1}$	(a) p + q
		(b) pq
	(b) $\begin{pmatrix} 2 & 6 & 3 \\ 1 & 1 & 1 \end{pmatrix}$	(c) 1
		(d) 0
		22. A team of 8 players is to be chosen from a
	$(5 \ 2)$	group of 12 players. Out of the eight players
	(c) 1 6	one is to be elected as captain and another as
	$\begin{pmatrix} 4 & 3 \end{pmatrix}$	vice-captain. In how many ways can this be done ?
		(a) 27720
	$(2 \ 5)$	
	(d) 6 1	(b) 13860 (c) 6000
		(c) 6930
	(3 4)	(d) 495
10		

.

.

(6 – A)

16.	यदि A = {a, b, c, d}, तो A के उचित उपसमुच्चयों की	19.	निम्नलिखित कथनों पर विचार कीजिए :
	संख्या क्या है ? (a) 16		 किसी लीप वर्ष में 53 रविवार होने की प्रायिकता किसी गैर-लीप वर्ष में 53 रविवार होने की प्रायिकता की दुगुनी
			考 1
2	(b) 15(c) 14		 मार्च महीने में 5 सोमवार होने की प्रायिकता अप्रैल महीने में 5 सोमवार होने की प्रायिकता से तिगुनी है।
			उपरिलिखित में से कौन सा/से कथन सही है/हैं ?
	(d) 12		(a) केवल 1
17.	तीन अंकों वाली विषम संख्याएँ अंकों 1, 2, 3, 4, 5, 6 का		(b) केवल 2
•	उपयोग करके बनाई गई हैं । यदि अंकों का दुहराव स्वीकृत		(c) 1 और 2 दोनों
	है, तो ऐसी संख्याएँ कितनी हैं ?	ć	(d) न तो 1 और न ही 2
0	(a) 60		
	(b) 108	20.	निम्नलिखित कथनों पर विचार कीजिए :
	(c) 120	β.	 यदि A' = A, तो A एक अव्युत्क्रमणीय आव्यूह है, जहाँ A' है A का परिवर्त ।
	(d) 216		 यदि A कोई वर्ग आव्यूह इस प्रकार है कि A³ = I, तो A व्युत्क्रमणीय है ।
	$(5 \ 6 \ 1)$		उपरिलिखित में से कौन सा/से कथन सही है/हैं ?
18.	मान लीजिए कि $\dot{A} = \begin{pmatrix} 5 & 6 & 1 \\ 2 & -1 & 5 \end{pmatrix}$ और मान लीजिए		(a) केवल 1
			(b) केवल 2
	कि एक आव्यूह B ऐसा है कि AB = $\begin{pmatrix} 35 & 49 \\ 29 & 13 \end{pmatrix}$, तो		(c) 1 और 2 दोनों
			(d)ंन तो 1 और न ही 2
	B क्या है ?	21.	यदि किसी समान्तर श्रेणी का pवें पद का p गुना उसके qवें
		41.	पद का q गुना है, तो (p + q)वाँ पद किसके बराबर है ?
	(a) $\begin{pmatrix} 5 & 1 & 4 \\ 2 & 6 & 3 \end{pmatrix}$		(a) $p+q$
			(b) pq
	$(2 \ 6 \ 3)$		(c) 1
	(b) $\begin{pmatrix} 2 & 6 & 3 \\ 5 & 1 & 4 \end{pmatrix}$		(d) 0
		22	12 खिलाड़ियों के किसी समूह से 8 खिलाड़ियों की एक
	$\begin{pmatrix} 5 & 2 \end{pmatrix}$		टीम चुनी जाती है । इन आठ खिलाड़ियों में से एक को
ε.	(c) $\begin{vmatrix} 1 & 6 \\ 4 & 3 \end{vmatrix}$	2	कप्तान और दूसरे को उप-कप्तान चुना जाना है । ऐसा
a.	$\begin{pmatrix} 4 & 3 \end{pmatrix}$		कितने प्रकार से किया जा सकता है ?
	(9 5)		(a) 27720
			(b) 13860
a.	(d) $\begin{pmatrix} 6 & 1 \\ 3 & 4 \end{pmatrix}$.		(c) 6930
	(3 4)		(d) 495

(7 – A)

23. In tossing three coins at a time, what is the 27. The probability of guessing a correct answer'is probability of getting at most one head? $\frac{x}{12}$. If the probability of not guessing the $\frac{3}{8}$ (a) correct answer is $\frac{2}{3}$, then what is x equal to ? (b) (a) 2 (b) 3 $\frac{1}{2}$ (c) 4 (c) 6 (d) (d) 28. If the system of equations 2x + 3y = 7 and 2ax + (a + b)y = 28 has infinitely many What is the sum of the coefficients of all the solutions, then which one of the following is 24. terms in the expansion of $(45x - 49)^4$? correct ? (a) a = 2b(a) -256(b) b = 2a(b) -100(c) a = -2b(c) 100 (d) b = -2a(d) 256 29. If p and q are the roots of the equation $x^2 - px + q = 0$, then what are the values 25. Two balls are selected from a box containing of p and q respectively ? 2 blue and 7 red balls. What is the probability (a) 1, 0 that at least one ball is blue? (b) 0, 1 (a) (c) -2, 0(d) -2, 1(b) 30. Consider the following statements related to a $\frac{5}{12}$ variable X having a binomial distribution (c) $b_{\mathbf{x}}(\mathbf{n}, \mathbf{p})$: $\frac{7}{12}$ If $p = \frac{1}{2}$, then the distribution is 1, (d) symmetrical. 2. p remaining constant, P(X = r) increases If the equation $x^2 - bx + 1 = 0$ does not 26. as n increases. possess real roots, then which one of the Which of the statements given above is/are following is correct? correct? (a) -3 < b < 3(a)1 only (b) -2 < b < 2(b) 2 only b > 2 (c) (c) Both 1 and 2 (d) Neither 1 nor 2 b < -2(d) Q-OEBA-K-NBU (8 - A)

		20	
· :			
к ^с • • • ;	· ·	. en	·
23.	एक समय में तीन सिक्के उछालने में अधिक-से-अधिक एक शीर्ष प्राप्त होने की प्रायिकता क्या है ?	27. .	एक सही उत्तर का अनुमान करने की प्रायिकता $\frac{x}{12}$ है । यदि
	(a) $\frac{3}{8}$		सही उत्तर का अनुमान न करने की प्रायिकता $rac{2}{3}$ है, तो x का
	8		मान क्या है ?
	(b) $\frac{7}{8}$		
ψ.	- 1 /		(a) 2
	(c) $\frac{1}{2}$		(b) 3 ·
2	(d) $\frac{1}{2}$		(c) 4
	(u) <u>8</u>		(d) 6
24.	$(45 \mathrm{x} - 49)^4$ के विस्तार में सभी पदों के गुणांकों का		
æ ⁷²	योगफल क्या है ?	28.	यदि समीकरण निकाय $2x + 3y = 7$ तथा
	(a) -256		2ax + (a + b) y = 28 के अनन्त हल हैं, तो निम्नलिखित में से कौन सा सही है ?
a D			
87	(b) -100		(a) $a = 2b$
	(c) 100		(b) $b = 2a$
	(d) 256		(c) $a = -2b$
25.	एक संन्दूक में 2 नीली और 7 लाल गेंदें हैं जिनमें से दो गेंदें		(d) $b = -2a$
201	चुनी जाती हैं । इसकी क्या प्रायिकता है कि कम-से-कम एक	29.	यदि समीकरण $x^2 - px + q = 0$ के मूल p और q हैं, तो
	गेंद नीली होगी ?		p और q के मान क्रमशः क्या हैं ?
	2		(a) 1, 0
e.	(a) $\frac{2}{9}$		(b) 0, 1
	(b) $\frac{7}{2}$		(c) $-2, 0$
	9		(d) $-2, 1$
	(c) $\frac{5}{12}$		
		30.	द्विपद बंटन b _X (n, p) वाले चर X से सम्बन्धित
e	(d) $\frac{7}{12}$.		निम्नलिखित कथनों पर विचार कीजिए :
20			1. यदि $\mathbf{p}=rac{1}{2}$, तो बंटन सममित है ।
26.	यदि समीकरण $x^2 - bx + 1 = 0$ के वास्तविक मूल	8	2. p अचर है, तो P(X = r) वर्धमान है जब n वर्धमान
	नहीं हैं, तो निम्नलिखित में से कौन सा सही है ?		है ।
17	.(a) − 3 < b < 3		उपरिलिखित कथनों में से कौन सा/से सही हैं/हैं ?
			(a) केवल 1
	(b) $-2 < b < 2$		(b) केवल 2
	(c) $b > 2$		(c) 1 और 2 दोनों
	(d) $b < -2$		(d) न तो 1 और न ही 2
			6
Q-01	EBA-K-NBU (9 -	- A)	
3	2 A	1	

31. What is the number of ways of arranging 35. The order of a set A is 3 and that of a set the letters of the word 'BANANA' so that B is 2. What is the number of relations no two N's appear together ? from A to B? 40 (a) (a) 4 (b)60 (b) 6 (c)80 (c) 32 (d) 100 (d) 64 What is the value of $\frac{\log_{\sqrt{\alpha\beta}}(H)}{\log_{\sqrt{\alpha\beta}}(H)}$ 32. 36. Consider the equation (x - p)(x - 6) + 1 = 0having integral coefficients. If the equation has integral roots, then what values can'p (a) $\log_{\alpha\beta}(\alpha)$ have ? $\log_{\alpha\beta\gamma}(\alpha\beta)$ (b) (a) 4 or 8 $\log_{\alpha\beta} (\alpha\beta\gamma)$ (c) 5 or 10 (b) $\log_{\alpha\beta}(\beta)$ (d) 6 or 12 (c) (d) 3 or 6 The 59th term of an AP is 449 and the 37. 449th term is 59. Which term is equal to 0 (zero) ? 33. What is the equivalent binary number of the decimal number 13.625 ? 501st term (a) (a) 1101·111 502nd term (b) 508th term 1111.101 (b) (c) (c) $1101 \cdot 101$ 509th term (d) (d) 1111.111 38. For a set A, consider the following statements : 1. $A \cup P(A) = P(A)$ 34. What is the value of 2. $\{A\} \cap P(A) = A$ $\left(\frac{i+\sqrt{3}}{-i+\sqrt{3}}\right)^{200} + \left(\frac{i-\sqrt{3}}{i+\sqrt{3}}\right)^{200} + 1?$ 3. $P(A) - \{A\} = P(A)$ where P denotes power set. Which of the statements given above is/are correct? (a) –1 (a) 1 only (b) 0 (b) 2 only (c) 1 (c) 3 only (d) 2 1, 2 and 3. (d) Q-OEBA-K-NBU (10 - A)

	6. S		
31.	शब्द 'BANANA' के अक्षरों को इस प्रकार संयोजित करने के, कि कोई दो N एक साथ न आएँ, कितने तरीके हैं ?	35.	समुच्चय A का गणन-क्रम 3 है और एक समुच्चय B का 2 है । A से B तक सम्बन्धों की संख्या क्या है ?
	(a) 40	et #	(a) 4
	(b) .60		(b) 6
	(c) 80		(c) 32
		N.	(d) 64
	(d) 100		
32.	पूर्णांक गुणांकों वाले समीकरण (x – p) (x – 6) + 1 = 0 पर विचार कीजिए । यदि समीकरण के मूल पूर्णांक हैं, तो p	36.	$rac{\log \sqrt{lpha eta}.(H)}{\log \sqrt{lpha eta \gamma}.(H)}$ का मान क्या है ?
	का मान क्या हो सकता है ?		(a) $\log_{\alpha\beta}(\alpha)$
8	(a) 4 अथवा 8		(b) $\log_{\alpha\beta\gamma}(\alpha\beta)$
е: Т	(b) 5 अथवा 10		(c) $\log_{\alpha\beta} (\alpha\beta\gamma)$
	(c) 6 अथवा 12		(d) $\log_{\alpha\beta}(\beta)$
	(d) 3 अथवा 6	37.	किसी समान्तर श्रेणी का 59वाँ पद 449 है और 449वाँ पद 59 है । कौन सा पद 0 (शून्य) है ?
33.	्दशमलव संख्या 13.625 की समतुल्य द्वि-आधारी संख्य क्या है ?	T 	(a) 501वॉं पद
	(a) 1101·111		(b) 502वाँ पद
	(b) 1111 101		(c) 508वाँ पद
	(c) 1101:101		(d) 509वाँ पद
	(d) 1111111	38.	किसी समुच्चय A के लिए, निम्नलिखित कथनों पर विचार कीजिए :
.34.	$(i+\sqrt{3})^{200}$ $(i-\sqrt{3})^{200}$		1. $A \cup P(A) = P(A)$
2 2 2	$\left(\frac{i+\sqrt{3}}{-i+\sqrt{3}}\right)^{200} + \left(\frac{i-\sqrt{3}}{i+\sqrt{3}}\right)^{200} + 1$		2. $\{A\} \cap P(A) = A$
	का मान क्या है ?		3. P(A) – {A} = P(A) जहाँ P का अर्थ है घात समुच्चय ।
¥.	5 ₁	a.	उपरिलिखित कथनों में से कौन सा/से सही है/हैं ?
	(a) -1		(a) केवल 1
	(b) 0	2	(a) केवल 2
	(c) 1	1	(c) केवल 3
	(d) 2		(d) 1, 2 और 3
		I	
~	ocov v vicuou (11	_ Δ)

(11 – A)

. 39.	If the AM and HM of two numbers are 27 and 12 respectively, then what is their GM equal to ?	43.	What is the maximum point on the curve $x = e^{x}y$?
	(a) 12		(a) (1, e)
	(b) 18		(b) $(1, e^{-1})$
•. •	(c) 24		(c) (e, 1)
	(d) 27		(d) $(e^{-1}, 1)$
40.	If $\tan A = \frac{1}{2}$ and $\tan B = \frac{1}{3}$, then what is the value of $(A + B)$?	44.	The function $f(x) = e^x$, $x \in R$ is
	(a) 0 π		(a) Onto but not one-one
	(b) $\frac{\pi}{4}$	ĸ	(b) One-one onto
	(c) $\frac{\pi}{2}$	ei I	(c) One-one but not onto
\$ 20	(d) π		(d) Neither one-one nor onto
41.	If $(4, 0)$ and $(-4, 0)$ are the foci of an ellipse and the semi-minor axis is 3, then the ellipse passes through which one of the following points ?	45.	If $y = \sin^{-1}\left(\frac{4x}{1+4x^2}\right)$, then what is $\frac{dy}{dx}$ equal
8	(a) (2, 0)		, to ?
	(b) (0, 5)	ç	(a) $\frac{1}{1+4x^2}$
	(c) (0, 0)		×
49	(d) (5, 0)		(b) $-\frac{1}{1+4x^2}$
42.	Under what condition do the planes bx - ay = n, $cy - bz = l$, $az - cx = mintersect in a line ?$		
	(a) $a + b + c = 0$	E 14	(c) $\frac{4}{1+4x^2}$
	(b) a = b = c		
	(c) $al + bm + cn = 0$		(d) $\frac{4x}{1+4x^2}$
	(d) $l + m + n = 0$	ε.	1 1 IA
Q-OE	BA-K-NBU (12 –	Δ)	2.

e ^{ten}

6 si

* X	· · · ·	
39.	यदि दो संख्याओं के समान्तर माध्य और हरात्मक माध्य 43 क्रमशः 27 और 12 हैं, तो उनका गुणोत्तर माध्य क्या है ?	. वक्र x = e ^x y का उच्चिष्ठ बिन्दु क्या है ? (a) (1, e)
	(a) 12	(b) $(1, e^{-1})$
0	(b) 18	(c) (e, 1)
	(c) 24	(d) $(e^{-1}, 1)$
	(d) 27	
40.	यदि $\tan A = \frac{1}{2}$ और $\tan B = \frac{1}{3}$, तो $(A + B)$ 44	4. फलन $f(x) = e^x$, $x \in R$
8	का मान क्या है ?	(a) आच्छादक है पर एकैकी नहीं
a	(a) 0 π	(b) एकैकी आच्छादक है
	(b) $\frac{\pi}{4}$	(c) एकैकी है किन्तु आच्छादक नहीं
•	(c) $\frac{\pi}{2}$	(d) न तो एकैकी है और न ही आच्छादक
	(d) π	via less laborations and matching provide basis of an interview
41.	यदि किसी दीर्घवृत्त की नाभियाँ (4, 0) तथा (– 4, 0) हैं और अर्धलघु अक्ष 3 है, तो निम्नलिखित बिन्दुओं में से किससे दीर्घवृत्त गुज़रता है ?	5. यदि $y = \sin^{-1}\left(\frac{4x}{1+4x^2}\right)$, तो $\frac{dy}{dx}$ का मान क्या है ?
54	(a) $(2, 0)$	(a) $-\frac{1}{2}$
··· ;	(b) (0, 5)	$1+4x^2$
3	(c) (0, 0)	
1	(d) (5, 0)	(b) $-\frac{1}{1+4x^2}$
42.	किस प्रतिबन्ध के अधीन तल $bx - ay = n$, $cy - bz = l$, az - cx = m एक रेखा में मिलते हैं ?	(c) $\frac{4}{1-\frac{2}{2}}$
1	(a) $a + b + c = 0$	$1+4x^2$
	(b) a = b = c	
	(c) al + bm + cn = 0	(d) $\frac{4x}{1+4x^2}$
	(d) $l + m + n = 0$, · · ·

(13 – A)

		10	
46.	What is the value of λ for which the vectors $\hat{i} - \hat{j} + \hat{k}$, $2\hat{i} + \hat{j} - \hat{k}$, $\lambda\hat{i} - \hat{j} + \lambda\hat{k}$ are coplanar?	50.	What is the derivative of $x\sqrt{a^2 - x^2} + a^2 \sin^{-1}\left(\frac{x}{a}\right)$?
	 (a) 1 (b) 2 (c) 3 		(a) $\sqrt{a^2 - x^2}$ (b) $2\sqrt{a^2 - x^2}$
	(d) 4		(c) $\sqrt{x^2-a^2}$
47.	What is the equation of the plane through z-axis and parallel to the line $\frac{x-1}{\cos \theta} = \frac{y+2}{\sin \theta} = \frac{z-3}{0}$?	51.	(d) $2\sqrt{x^2 - a^2}$. If (-5, 4) divides the line segment between
22 #	$cos \theta sin \theta 0$ (a) $x \cot \theta + y = 0$	ø	the coordinate axes in the ratio $1:2$, then what is its equation ?
	(b) $x \tan \theta - y = 0$		(a) $8x + 5y + 20 = 0$
	(c) $x + y \cot \theta = 0$		(b) $5x + 8y - 7 = 0$
	(d) $x - y \tan \theta = 0$	1	(c) $8x - 5y + 60 = 0$
48.	If the lines $3y + 4x = 1$, $y = x + 5$ and $5y + bx = 3$ are concurrent, then what is the value of b?	52.	(d) $5x - 8y + 57 = 0$
8	(a) 1	02.	What is the value of $ \cos 15^\circ \sin 15^\circ \cos 45^\circ \cos 15^\circ $
12	(b) 3		$ \cos 45^\circ \sin 45^\circ \times \sin 45^\circ \sin 15^\circ $?
	(c) 6 (d) 0		(a) $\frac{1}{4}$
49.	What is the least value of $f(x) = 2x^3 - 3x^2 - 12x + 1$ on [-2, 2.5]?		(b) $\frac{\sqrt{3}}{2}$
	(a) -3 (b) 8 (c) -19		(c) $-\frac{1}{4}$
·	(d) -16.5		(d) $-\frac{3}{4}$

(14 – A)

4 1

**	<i>1</i>		
46.	λ and the third hand hand hand hand hand hand hand han	50.	$x\sqrt{a^2-x^2} + a^2 \sin^{-1}\left(\frac{x}{a}\right)$ का अवकलज क्या है ?
7.0	$2\hat{i} + \hat{j} - \hat{k}, \lambda\hat{i} - \hat{j} + \lambda\hat{k}$ समतलीय हों ? (a) 1 (b) 2	• • •	(a) $\sqrt{a^2 - x^2}$ (b) $2\sqrt{a^2 - x^2}$
	(c) 3		(b) $2\sqrt{a^2 - x}$ (c) $\sqrt{x^2 - a^2}$
47.	(d) 4 रेखा $\frac{x-1}{\cos \theta} = \frac{y+2}{\sin \theta} = \frac{z-3}{0}$ के समान्तर और		(d) $2\sqrt{x^2 - a^2}$
× *	z-अक्ष से गुज़रने वाले समतल का समीकरण क्या है ? (a) $x \cot \theta + y = 0$	51.	यदि निर्देशाक्षों के बीच के रेखाखण्ड को (– 5, 4), अनुपात 1 : 2 में विभाजित करता है, तो इसका समीकरण क्या है ?
2 7 2	(b) $x \tan \theta - y = 0$ (c) $x + y \cot \theta = 0$ (d) $x - y \tan \theta = 0$		(a) $8x + 5y + 20 = 0$ (b) $5x + 8y - 7 = 0$
48.	यदि रेखाएँ 3y + 4x = 1, y = x + 5 और 5y + bx = 3 संगामी हैं, तो b का मान क्या है ?		(c) $8x - 5y + 60 = 0$ (d) $5x - 8y + 57 = 0$
<u>.</u>	(a) 1(b) 3	52.	cos 15° sin 15° cos 45° cos 15° × কা
	(c) 6 (d) 0		cos 45° sin 45° sin 45° sin 15° मान क्या है ?
49.	[–2, 2 5] पर f(x) = $2x^3 - 3x^2 - 12x + 1$ का न्यूनतम मान क्या है ?		(a) $\frac{1}{4}$ (b) $\frac{\sqrt{3}}{2}$
e e	(a) -3 (b) 8		(c) $-\frac{1}{4}$ •
1	(c) -19 (d) -16.5		(d) $-\frac{3}{4}$
Q-01	EBA-K-NBU (15	– A)	и. Я. Д. — — — — — — — — — — — — — — — — — — —

53.	Out of 32 persons, 30 invest in National		What is the geometric interpretation of the
	Savings Certificates and 17 invest in shares.		identity $(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})?$
	What is the number of persons who invest in both ? (a) 13		1. If the diagonals of a given parallelogram are used as sides of a second- parallelogram, then the area of the second parallelogram is twice that of the
	2		given parallelogram.
8) 10	(b) 15(c) 17		2. If the semi-diagonals of a given parallelogram are used as sides of a second parallelogram, then the area of the second parallelogram is half that of
)) 6	(d) 19		the given parallelogram.
54.	What are the equations of the directrices of		Select the correct answer using the code given below :
	the ellipse $25x^2 + 16y^2 = 400$?		(a) 1 only
₿k.	(a) $3x \pm 25 = 0$		(b) 2 only
			(c) Both 1 and 2
	(b) $3y \pm 25 = 0$		(d) Neither 1 nor 2
	(c) $x \pm 15 = 0$	20	$\pi/2$ $\sin^3 x$
	(d) $y \pm 25 = 0$	58.	What is $\int_{0}^{\pi/2} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} dx?$
55.	Let A be an $n \times n$ matrix. If	27	(a) π
	det $(\lambda A) = \lambda^s \det (A)$, what is the value of s?		(b) $\frac{\pi}{2}$
8 8	(a) 0		(c) $\frac{\pi}{4}$
	(b) 1		(d) 0
	(c) -1	59.	The function $f(x) = \frac{x}{x^2 + 1}$ from R to R is
	(d) n		(a) One-one as well as onto
56.	Let E be the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and C be		(b) Onto but not one-one
00,			(c) Neither one-one nor onto
56 (1)	the circle $x^2 + y^2 = 9$. Let $P = (1, 2)$ and $Q = (2, 1)$. Which one of the following is		(d) One-one but not onto
	correct?	60.	If A be a real skew-symmetric matrix of order
	(a) Q lies inside C but outside E		n such that $A^2 + I = 0$, I being the identity matrix of the same order as that of A, then
	(b) Q lies outside both C and E	14	what is the order of A?
	(c) P lies inside both C and E		(a) 3.
			(b) Odd
10	(d) P lies inside C but outside E		(c) Prime number
4 .			(d) Even

(16 – A)

<u>\$2</u>

ľ				ell R
	53. '	32 व्यक्तियों में से 30 ऐसे हैं जो राष्ट्रीय बचत प्रमाण-पत्रों में निवेश करते हैं और 17 ऐसे हैं जो शेयरों में ! ऐसे व्यक्तियों की संख्या क्या है जो दोनों में निवेश करते हैं ?		सर्वसमिका $(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$ का ज्यामितीय तात्पर्य क्या है ? 1. यदि किसी दिए गए समान्तर चतुर्भुज के विकर्णों को एक
		 (a) 13 (b) 15 (c) 17 (d) 19 	e e	दूसरे समान्तर चतुर्भुज की भुजाओं के रूप में प्रयुक्त किया जाए, तो दूसरे समान्तर चतुर्भुज का क्षेत्रफल दिए गए समान्तर चतुर्भुज के क्षेत्रफल का दुगुना होगा । 2. यदि किसी दिए गए समान्तर चतुर्भुज के अर्ध-विकर्णों को एक दूसरे समान्तर चतुर्भुज की भुजाओं के रूप में प्रयुक्त किया जाए, तो दूसरे समान्तर चतुर्भुज का क्षेत्रफल दिए गए समान्तर चतुर्भुज के क्षेत्रफल का आधा होगा ।
	54.	दीर्घवृत्त $25x^2 + 16y^2 = 400$ की नियताओं के समीकरण क्या हैं ? (a) $3x \pm 25 = 0$ (b) $3y \pm 25 = 0$ (c) $x \pm 15 = 0$ (d) $y \pm 25 = 0$	58.	मीचे दिए गए कूट का प्रयोग कर सही उत्तर चुनिए :(a) केवल 1(b) केवल 2(c) 1 और 2 दोनों(d) न तो 1 और न ही 2 $\pi/2$ $\int_{0}^{\pi/2} \frac{\sin^3 x}{\sin^3 x + \cos^3 x} dx$ क्या है ?
	55.	मान लीजिए, A कोई $n \times n$ आव्यूह है । यदि det $(\lambda A) = \lambda^s$ det (A) , तो s का मान क्या है ? (a) 0 (b) 1 (c) -1	•	(a) π (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{4}$ (d) 0
	•3	(d) n	59.	R से R तक फलन $f(x) = \frac{x}{x^2 + 1}$
	56.	मान लीजिए E है दीर्घवृत्त $\frac{x^2}{9} + \frac{y^2}{4} = 1$ और C है वृत्त $x^2 + y^2 = 9$. मान लीजिए P = (1, 2) और Q = (2, 1) 1 निम्नलिखित में से कौन सा सही है ? (a) Q है C के भीतर किन्तु E के बाहर (b) Q है C और E दोनों से बाहर (c) P है C और E दोनों के भीतर (d) P है C के भीतर किन्तु E के बाहर	60.	 (a) एकैकी तथा आच्छादक है (b) आच्छादक है किन्तु एकैकी नहीं (c) न तो एकैकी है और न ही आच्छादक (d) एकैकी है किन्तु आच्छादक नहीं यदि A कोई कोटि n का वास्तविक विषम-सममित आव्यूह इस प्रकार है कि A² + I = 0, जहाँ I उसी कोटि का तत्समक आव्यूह है जिस कोटि का A, तो A की कोटि क्या है ? (a) 3 (b) विषम (c) अभाज्य संख्या (d) सम
	53			8.5

(17 – A)

Directions : For the next **3** (three) questions to **64**. follow :

The table below gives an incomplete frequency distribution, with two missing frequencies f_1 and f_2 .

Value of XPrequency0 f_1 1 f_2 2434343443The total frequency is 18 and the arithmetic(a) 4(b) 3(c) 2(d) 162. What is the value of f_2 ?(a) $\frac{\sqrt{5}}{2}$ (b) $\frac{\sqrt{5}}{3}$ (c) $\frac{1}{2^6}$ (d) $\frac{1}{2^6}$ (e) $\frac{\sqrt{5}}{3}$ (f) $\frac{16}{9}$ 63. What is the coefficient of variance ?(a) $\frac{200}{3}$ (b) $\frac{50\sqrt{5}}{3}$ (c) $\frac{200}{3}$ (c) $\frac{600}{\sqrt{5}}$ (d) 150	5				_	<i>t</i> 2	(b) 8712
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Value of X	Frequency		ŀ	(c) 8729
$\frac{2}{4}$ $\frac{3}{4}$ $\frac{4}{3}$ The total frequency is 18 and the arithmetic mean of X is 2. 61. What is the value of f_2 ? (a) 4 (b) 3 (c) 2 (d) 1 62. What is the standard deviation ? (a) $\frac{\sqrt{5}}{2}$ (b) $\frac{\sqrt{5}}{3}$ (c) $\frac{4}{3}$ (d) $\frac{16}{9}$ 63. What is the coefficient of variance ? (a) $\frac{200}{3}$ (b) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{200}{3}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{200}{3}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{200}{3}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$			0	. f ₁			(d) 9276
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	f_2		65.	The mean and variance of a binomial
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		14 14	2	4			distribution are 8 and 4 respectively. What is
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	е.		3		· · .		. 1
61. What is the value of f_2 ? (a) 4 (b) $\frac{\sqrt{5}}{3}$ (c) $\frac{4}{3}$ (c) $\frac{200}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (a) $\frac{200}{\sqrt{5}}$ (b) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$	3		4.	3	•.		(a) $\frac{12}{2^{12}}$
61. What is the value of f_2 ? (a) 4 (b) 3 (c) 2 (d) 1 62. What is the standard deviation? (a) $\frac{\sqrt{5}}{2}$ (b) $\frac{\sqrt{5}}{3}$ (c) $\frac{4}{3}$ 63. What is the coefficient of variance? (a) $\frac{200}{3}$ (b) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{1}{2^6}$ (d) $\frac{1}{2^6}$ (e) $\frac{1}{2^6}$ (f) $\frac{1}{2^6}$ (f) $\frac{1}{2^6}$ (g) $\frac{1}{2^6}$ (g) $\frac{1}{2^6}$ (h) $\frac{1}{2^6$	12	. The to	tal frequency is	18 and the arit	hmetic	EX.	(b) $\frac{1}{88}$
(a) $\frac{4}{(b)}$. 3 (c) 2 (d) 1 (a) $\frac{\sqrt{5}}{2}$ (b) $\frac{\sqrt{5}}{3}$ (c) $\frac{4}{3}$. (c) $\frac{4}{3}$. (c) $\frac{200}{\sqrt{5}}$. (c) $\frac{600}{\sqrt{5}}$. (c) $\frac{20}{\sqrt{57}}$. (c) $\frac{60}{\sqrt{5}}$. (c) \frac	8	mean o	of X is 2.			2	2
(a) $\frac{4}{(b)}$. 3 (c) 2 (d) 1 (a) $\frac{\sqrt{5}}{2}$ (b) $\frac{\sqrt{5}}{3}$ (c) $\frac{4}{3}$ (c) $\frac{200}{3}$ (c) $\frac{600}{\sqrt{5}}$ (a) $\frac{200}{\sqrt{5}}$ (b) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (d) $\frac{16}{9}$ (e) $\frac{16}{9}$ (f) $\frac{16}{9}$ (f) $\frac{16}{9}$ (g) $\frac{16}{9}$ (h) $\frac{50\sqrt{5}}{9}$ (h) $\frac{50\sqrt{5}}{9}$ (h) $\frac{50\sqrt{5}}{9}$ (h) $\frac{50\sqrt{5}}{9}$ (h) $\frac{600}{\sqrt{5}}$ (h) $\frac{600}{\sqrt{5}}$ (h) $\frac{600}{\sqrt{5}}$ (h) $\frac{600}{\sqrt{5}}$ (h) $\frac{600}{\sqrt{5}}$ (h) $\frac{600}{\sqrt{5}}$ (h) $\frac{16}{9}$ (h) $\frac{16}{$	61.	What i	s the value of f ₂	?			(c) $\frac{1}{-6}$
(c) $\frac{2}{2^4}$ (d) 1 62. What is the standard deviation ? (a) $\frac{\sqrt{5}}{2}$ (b) $\frac{\sqrt{5}}{3}$ (c) $\frac{4}{3}$ 63. What is the coefficient of variance ? (a) $\frac{200}{3}$ (b) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (d) $\frac{16}{3}$ (e) $\frac{200}{3}$ (f) $\frac{50\sqrt{5}}{9}$ (g) $\frac{50\sqrt{5}}{9}$ (h) $\frac{50\sqrt{5}}{9}$ (h) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{24}{3}$ (c) $\frac{6^{1n x} \sin x dx \ equal to ? (a) \frac{2^{10}}{2^4}(b) \frac{51}{2^4}(c) \frac{6^{1n x} (\sin x - \cos x) + c}{(3 \sin x + \cos x) + c}(c) (x \sin x + \cos x) + c} (d) (\sin x + x \cos x) + c}(d) (\sin x + x \cos x) + c} (d) (\sin x + x \cos x) + c}(e) (x \sin x + \cos x) + c(f) (x \sin x + \cos x) + c(g) (x \sin x + \cos x) + c(h) (x $	5	(a) 4			0	a U	2°
(c) $\frac{2}{(d) - 1}$ 62. What is the standard deviation ? (a) $\frac{\sqrt{5}}{2}$ (b) $\frac{\sqrt{5}}{3}$ (c) $\frac{4}{3}$ (d) $\frac{16}{9}$ 63. What is the coefficient of variance ? (a) $\frac{200}{3}$ (b) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{2^{10}}{3}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{2^{10}}{3}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{2^{10}}{3}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{2^{10}}{3}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{2^{10}}{3}$ (c) $\frac{2^{10}}{3}$	12	(b). 3		61 ¹	×		(d) $\frac{1}{1}$
62. What is the standard deviation ? (a) $\frac{\sqrt{5}}{2}$ (b) $\frac{\sqrt{5}}{3}$ (c) $\frac{4}{3}$ (d) $\frac{16}{9}$ 63. What is the coefficient of variance ? (a) $\frac{200}{3}$ (b) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{57}}$ (c) $\frac{600}{\sqrt{57}}$ (c) $\frac{20}{\sqrt{57}}$ (c) $\frac{20}{\sqrt{57}}$		(c) 2	5. 5				24
62. What is the standard deviation ? (a) $\frac{\sqrt{5}}{2}$ (b) $\frac{\sqrt{5}}{3}$ (c) $\frac{4}{3}$ (d) $\frac{16}{9}$ 63. What is the coefficient of variance ? (a) $\frac{200}{3}$ (b) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$		(d) 1			e 8	2	C
(a) $\frac{\sqrt{5}}{2}$ (b) $\frac{\sqrt{5}}{3}$ (c) $\frac{4}{3}$ (d) $\frac{16}{9}$ (e) $\frac{200}{3}$ (b) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{57}}$ (c) $\frac{20}{\sqrt{57}}$ (c) $\frac{20}{\sqrt{57}}$ (c) $\frac{20}{\sqrt{57}}$ (c) $\frac{20}{\sqrt{57}}$	62.	What is	s the standard d	eviation ?		66.	What is $\int e^{in x} \sin x dx$ equal to ?
(a) $\frac{1}{2}$ (b) $\frac{\sqrt{5}}{3}$ (c) $\frac{4}{3}$ (c) $\frac{4}{3}$ (d) $\frac{16}{9}$ (e) $\frac{200}{3}$ (f) $\frac{50\sqrt{5}}{9}$ (g) $\frac{50\sqrt{5}}{9}$ (h) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (d) $(\sin x + x \cos x) + c$ (e) $(x \sin x + \cos x) + c$ (f) $(\sin x + x \cos x) + c$ (f) $(\sin x + x \cos x) + c$ (g) $(\sin x + x \cos x) + c$ (h) $(\sin x + x \cos x) + c$		3	-	eviation :		~	(a) $e^{\ln x} (\sin x - \cos x) + c$
(b) $\frac{\sqrt{5}}{3}$ (c) $\frac{4}{3}$ (d) $\frac{16}{9}$ (e) $\frac{16}{9}$ (f) $\frac{16}{9}$ (g) $\frac{16}{9}$ (g) $\frac{16}{9}$ (g) $\frac{200}{3}$ (g) $\frac{50\sqrt{5}}{9}$ (g) $\frac{50\sqrt{5}}{9}$ (g) $\frac{600}{\sqrt{5}}$ (h) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (b) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (d) $(\sin x + x \cos x) + c$ where c is a constant of integration. (f) An observed event B can occur after one of the three events A_1, A_2, A_3 . If $P(A_1) = P(A_2) = 0.4$, $P(A_3) = 0.2$ and $P(B A_3) = 0.125$, what is the probability of A_1 after observing B ? (a) $1/3$ (b) $6/19$ (c) $20/57$		(a) $\frac{v}{2}$	<u>.</u>		ø		(b) $(\sin x - x \cos x) + c$
(b) $\frac{\sqrt{5}}{3}$ (c) $\frac{4}{3}$ (d) $\frac{16}{9}$ (e) $\frac{16}{9}$ (f) $\frac{16}{9}$ (g) $\frac{16}{9}$ (g) $\frac{200}{3}$ (h) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (b) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (d) $(\sin x + x \cos x) + c$ where c is a constant of integration. (f) An observed event B can occur after one of the three events A_1, A_2, A_3 . If $P(A_1) = P(A_2) = 0.4$, $P(A_3) = 0.25$ and $P(B A_3) = 0.125$, what is the probability of A_1 after observing B ? (a) $1/3$ (b) $6/19$ (c) $20/57$		-	- F		u i		(c) $(x \sin x + \cos x) + c$
(c) $\overline{3}$ (d) $\frac{16}{9}$ (d) $\frac{16}{9}$ (e) $\frac{200}{3}$ (b) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$		(b) $\frac{\sqrt{2}}{2}$	<u>5</u> 3				
67. An observed event B can occur after one of the three events A_1, A_2, A_3 . If $P(A_1) = P(A_2) = 0.4$, $P(A_3) = 0.2$ and $P(B A_1) = 0.25$, $P(B A_2) = 0.4$, $P(B A_3) = 0.125$, what is the probability of A_1 after observing B ? (a) $\frac{16}{9}$ (b) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{20}{5}$	1	· 4	1 20	۵ م	80		where c is a constant of integration.
(d) $\frac{16}{9}$ 63. What is the coefficient of variance? (a) $\frac{200}{3}$ (b) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (d) $\frac{16}{9}$ (e) $\frac{600}{\sqrt{5}}$ (f) $\frac{16}{9}$ (f) $\frac{16}{9}$ (g) $\frac{16}{9}$ (h) \frac	1 2 - 20	(c) - 3		u ti		67.	An observed event B can occur after one of
63. What is the coefficient of variance ? (a) $\frac{200}{3}$ (b) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (b) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$ (c) $\frac{20}{\sqrt{5}}$		(d) 10	6			21	
63. What is the coefficient of variance ? (a) $\frac{200}{3}$ (b) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (b) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{200}{\sqrt{5}}$ (c) $\frac{200}{\sqrt{5}}$ (c) $\frac{200}{\sqrt{5}}$ (c) $\frac{200}{\sqrt{5}}$ (c) $\frac{200}{\sqrt{5}}$ (c) $\frac{200}{\sqrt{5}}$ (c) $\frac{200}{\sqrt{5}}$		(u) - <u>g</u>		**	543		
(a) $\frac{200}{3}$ (b) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{600}{\sqrt{5}}$ (c) $\frac{20}{57}$ (c) $\frac{20}{57}$ (c) $\frac{20}{57}$ (c) $\frac{20}{57}$	63.	What is	s the coefficient o	of variance?	•		_
$\frac{50}{9}$ A ₁ after observing B ? (c) $\frac{600}{\sqrt{5}}$ (a) 1/3 (c) $\frac{600}{\sqrt{5}}$ (c) 20/57		(a) $\frac{2}{2}$	00	21	-		
(b) $\frac{50\sqrt{5}}{9}$ (c) $\frac{600}{\sqrt{5}}$ (a) 1/3 (b) 6/19 (c) 20/57	×	(u)	3		,		
(c) $\frac{600}{\sqrt{5}}$ (b) $\frac{6}{19}$ (c) $\frac{20}{57}$		(h) 50	0√5	a E _{n c}			
(c) $\frac{300}{\sqrt{5}}$ (c) 20/57		— (a)	9		53	•	
$\sqrt{5}$ (c) 20/57	25 10	(a) 61	00	20 60			(b) 6/19
(d) 150 (d) 2/5		<u> </u>	5			5.8	(c) 20/57
8	2	(d) 15	0				(d) 2/5
	8			5 93 ⁹³ 1	*		

7 ? (a)

6729

What is the sum of all natural numbers

between 200 and 400 which are divisible by

Q-OEBA-K-NBU

(18 - A)

निर्देश : अगले 3 (तीन) प्रश्नों के लिए : -

नीचे की सारणी में एक अपूर्ण बारंबारता बंटन दिया है जिसमें दो बारंबारताएँ f₁ और f₂ अनुपस्थित हैं ।

X का मान	बारंबारंता
0	f ₁
1	f_2
2	4
3	4
4	3

कुल बारंबारता 18 है और X का समांतर माध्य 2 है।

61. f₂ का मान क्या है ?

(a) 4
(b) 3
(c) 2
(d) 1

62. मानक विचलन क्या है ?

(a) $\frac{\sqrt{5}}{2}$ (b) $\frac{\sqrt{5}}{3}$ (c) $\frac{4}{3}$ (d) $\frac{16}{9}$

63.

(a) $\frac{200}{3}$ (b) $\frac{50\sqrt{5}}{9}$

प्रसरण गुणाक क्या है ?

(c) $\frac{600}{\sqrt{5}}$ (d) 150

Q-OEBA-K-NBU

1

64. 200 और 400 के बीच की 7 से विभाज्य सभी धनपूर्ण (प्राकृतिक) संख्याओं का योगफल क्या है ?

- (a) 6729
- (b) · 8712
- (c) 8729
- (d) · 9276

65.

- किसी द्विपद बंटन के माध्य और प्रसरण क्रमशः 8 और 4 हैं । P(X = 1) का मान क्या है ?
- (a) $\frac{1}{2^{12}}$ (b) $\frac{1}{2^8}$ (c) $\frac{1}{2^6}$ (d) $\frac{1}{2^4}$
- **66.** $\int e^{ln \cdot x} \sin x \, dx \quad \text{ on } HIP \text{ or } R^2 ?$ (a) $e^{ln \cdot x} (\sin x \cos x) + c$ (b) $(\sin x x \cos x) + c$ (c) $(x \sin x + \cos x) + c$ (d) $(\sin x + x \cos x) + c$ $\exists R^{T} c \forall a \forall HID e RP \Im a \forall R^2 |$
- 67. तीन घटनाओं A_1 , A_2 , A_3 के पश्चात् एक प्रेक्षित घटना B घट सकती है | यदि $P(A_1) = P(A_2) = 0.4$, $P(A_3) = 0.2$ तथा $P(B \mid A_1) = 0.25$, $P(B \mid A_2) = 0.4$, $P(B \mid A_3) = 0.125$, तो B के प्रेक्षण के बाद A_1 की प्रायिकता क्या है ?
 - (a) 1/3
 - (b) 6/19
 - (c) 20/57
 - (d) 2/5

(19 - A)

	4		in the second
68.	What is $\int \frac{x^4 + 1}{x^2 + 1} dx$ equal to ?	72,	If ω is a complex cube root of unity and $x = \omega^2 - \omega - 2$, then what is the value of
	(a) $\frac{x^3}{3} - x + 4 \tan^{-1} x + c$		$x^2 + 4x + 7$?
14	(b) $\frac{x^3}{3} + x + 4 \tan^{-1} x + c$	ð.	(a) −2 (b) −1
	. 3	((c) 0
	(c) $\frac{x^3}{3} - x + 2 \tan^{-1} x + c$		(d) 1
8	(d) $\frac{x^3}{3} - x - 4 \tan^{-1} x + c$	73.	If $\cos x \neq -1$, then what is $\frac{\sin x}{1 + \cos x}$
	where c is a constant of integration.	° •	equal to ?
69.	What is the value of $\lim_{x \to \infty} \left(\frac{x+6}{x+1} \right)^{x+4}$?		(a) $-\cot \frac{x}{2}$
	$x \to \infty (x+1)$ (a) e		(b) $\cot \frac{x}{2}$
	(b) e ²		(c) $\tan_{x} \frac{x}{2}$
3	(c) e^4 (d) e^5	×	(d) $-\tan \frac{x}{2}$
70.	What is the area of the triangle with vertices $(0, 2, 2)$, $(2, 0, -1)$ and $(3, 4, 0)$? (a) 15/2 square units	74.	The angle of elevation of the tip of a flag post from a point 5 m away from its base is 75°. What is the approximate height of the flag post?
	(b) 15 square units	¥1	(a) 15 m
21	(c) 7/2 square units		(b) 17 m
	(d) 7 square units		(c) 19 m
71.	If $\frac{1}{2-\sqrt{-2}}$ is one of the roots of	1	(d) 21 m
	$ax^2 + bx + c = 0$ where a, b, c are real, then what are the values of a, b, c respectively ?	75,	If $A = P(\{1, 2\})$ where P denotes the power set, then which one of the following is correct?
	$(a)^{\bullet}$ 6, -4, 1	•. i	(a) $\{1, 2\} \subset A$
	(b) 4, 6, -1		(b) 1 ∈ A
	(c) $3, -2, 1$		(c) $\varphi \notin A$
	(d) 6, 4, 1		(d) $\{1, 2\} \in A$
0-05	BAK NEU (20	• •	

1

(20 - A)

• 8

•

Q-OEBA-K-NBU

(21 - A)[.]

76.	The geometric mean of three numbers was computed as 6. It was subsequently found that, in this computation, a number 8 was wrongly read as 12. What is the correct	8	In a triangle ABC, BC = $\sqrt{39}$, AC = 5 and AB = 7. What is the measure of the angle A ?
e.	geometric mean ?		(a) $\frac{\pi}{4}$
a,	(a) 4.	u" a u	4
	(b) 3√5	2	(b) $\frac{\pi}{3}$
18 18 10	(c) $2\sqrt[3]{18}$	2 2	(c) $\frac{\pi}{2}$
•	(d) None of the above	55 A1	(d) $\frac{\pi}{6}$
77.	Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = [a_{ij}]$, where i, j = 1, 2. If	81.	What is the modulus of $\frac{1+2i}{1-(1-i)^2}$?
12	its inverse matrix is $[b_{ij}]$, what is b_{22} ?		(a) 1
1	(a) -2	10	(b) $\sqrt{5}$
14	(b) 1	a	(c) $\sqrt{3}$
3	(c) $\frac{3}{2}$		
•	- 1 -		(d) 5
	(d) $-\frac{1}{2}$	•	
78.	The angle A lies in the third quadrant and it satisfies the equation $4(\sin^2 x + \cos x) = 1$. What is the measure of the angle A?	82.	If the line through the points A $(k, 1, -1)$ and B $(2k, 0, 2)$ is perpendicular to the line through the points B and C $(2 + 2k, k, 1)$, then what is the value of k?
			(a) -1
	(a) 225°		(b) 1
	(b) 240°		(c) –3
	(c) 210°	51	(d) 3
	(d) None of the above	83.	What is $\int \frac{1}{1+e^x} dx$ equal to?
79.	What is the area enclosed between the curves $y^2 = 12x$ and the lines $x = 0$ and $y = 6$?	к 1	(a) $x - ln x + c$
	5		
	(a) 2 square units		(b) $x - ln (\tan x) + c$
	(b) 4 square units		(c) $x - ln (1 + e^x) + c$
25	(c) 6 square units		(d) $ln (1 + e^x) + c$
2	(d) 8 square units		where c is a constant of integration.
Q-OEI	3A-K-NBU (22 –	A }	

S a se	2.0
76. तीन संख्याओं का गुणोत्तर माध्य 6 संगणित था । बाद में पता 80. लगा कि इस संगणन में एक संख्यां 8 को ग़लती से 12 पढ लिया गया था । सही गुणोत्तर माध्य क्या है ?	किसी त्रिभुज ABC में, BC = √39, AC = 5 और AB = 7 है । कोण A का माप क्या है ?
(a) 4	(a) $\frac{\pi}{4}$
(b) ∛5	(b), $\frac{\pi}{2}$
(c) $2\sqrt[3]{18}$	x 2 x
(d) उपरिलिखित में से कोई नहीं	(c) $\frac{\pi}{2}$
	(d) $\frac{\pi}{2}$
77. मान लीजिए A = $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ = $[a_{ij}]$, जहाँ i, j = 1, 2	6
है । यदि इसका व्युत्क्रम आव्यूह [b _{ij}] है, तो b ₂₂ क्या है ?	$\frac{1+2i}{1-(1-i)^2} \text{an Hiritry and } \frac{1}{2}?$
(a) – 2	(a) 1
(b) 1	(b) $\sqrt{5}$
(c) $\frac{3}{2}$	(c) $\sqrt{3}$
(d) $-\frac{1}{2}$	(d) 5
78. कोण A तीसरे चतुर्थांश में है और यह समीकरण	2. यदि बिन्दुओं A (k, 1, –1) और B (2k, 0, 2) से गुज़रती
$4 (\sin^2 x + \cos x) = 1$ को सन्तुष्ट करता है । कोण	रेखा बिन्दुओं B तथा C (2 + 2k, k, 1) के बीच की रेखा
A का माप क्या है ?	पर लम्ब है, तो k का मान क्यां है ?
(a) 225°	(a) -1
(b) 240°	(b) 1
(c) 210°	(c)3
(d) उपरिलिखित में से कोई नहीं	(d) 3
79. वक्र $y^2 = 12x$ और रेखाओं $x = 0$ तथा $y = 6$ के 8: बीच का क्षेत्रफल क्या है ?	J 1+e
(a) 2 वर्ग इकाई	(a) $x - ln x + c$ (b) $x - ln (tan x) + c$
(b) 4 वर्ग इकाई	(b) $x - ln (tan x) + c$ (c) $x - ln (1 + e^x) + c$
(c) 6 वर्ग इकाई	(d) $ln (1 + e^x) + c$
(d) 8 वर्ग इकाई	जहाँ c एक समाकलन-अचर है ।
	6 ¹⁰ 10

(23 – A)

84.	The function $f(x) = x \operatorname{cosec} x$ is (a) continuous for all values of x	88.	The vectors $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$, $\vec{b} = \hat{k}$,	
	(b) discontinuous everywhere		\overrightarrow{c} are such that they form a right-handed	
4	(c) continuous for all x except at $x = n\pi$,			
~~. 	where n is an integer		system. What is \vec{c} equal to ?	
	(d). continuous for all x except at $x = n\pi/2$,		Α	
	where n is an integer		(a) j	
85.	What is the solution of the differential		(b) $y\hat{j} - x\hat{k}$	
0,01			(b) yj = x k	
	equation $a\left(x\frac{dy}{dx} + 2y\right) = xy\frac{dy}{dx}$?		(c) $y\hat{i} - x\hat{j}$	
	у			
14	(a) $x^2 = kye^{\frac{y}{a}}$	2	(d) $\hat{x}\hat{i} - \hat{y}\hat{j}$	
	(b) $yx^2 = kye^{\frac{y}{a}}$	89.	If $x = t^2$, $y = t^3$, then what is $\frac{d^2y}{dx^2}$ equal	
	۰. ۵		to? $\frac{dx^2}{dx^2}$ equal	
	(c) $y^2x^2 = kye^{\frac{y^2}{a}}$	•		
	(c) $y x = kye^{-x}$		(a) 1	
	(d) None of the above	•	(b) $\frac{3}{2t}$.	
	where k is a constant.		2t	
		1. +	(c) $\frac{3}{4t}$	
86.	A vector \vec{b} is collinear with the vector	1 1	4t	
	\vec{a} = (2, 1, -1) and satisfies the condition	э.	(d) $\frac{3}{2}$.	
	$\vec{a} \cdot \vec{b} = 3$. What is \vec{b} equal to ?		2	
	(a) $(1, 1/2, -1/2)$			
*	(b) (2/3, 1/3, -1/3)	\$2	$\frac{\pi}{4}$	
		90.	What is $\int \tan^3 x dx$ equal to ?	,
	(c) $(1/2, 1/4, -1/4)$	2	$\frac{J}{-\pi}$	
	(d) (1, 1, 0)		4	
87.	What is the least positive integer n for which		(a) $\sqrt{3}$	
	$(1,1;)^n$			
	$\left(\frac{1+1}{1-i}\right) = 1?$		(b) $\frac{1}{3}$	
ă.				
3	(a) 16	21	(c) $\frac{1}{2}$	
15	(b) 12		2	
1	(c) 8 (d) 4		(d) 0	50
	T (D)			
Q-OE	3A-K-NBU (24 –	A)	8 X Y	
	×			

× .	· · ·		
8 4. 1	फलन $f(x) = x \operatorname{cosec} x$	88.	$\overrightarrow{\text{R}} = x\hat{i} + y\hat{j} + z\hat{k}, \overrightarrow{b} = \hat{k}, \overrightarrow{c} \overrightarrow{va}$
5	(a) x के सभी मानों के लिए संतत है		दक्षिणावर्ती निकाय बनाते हैं । टें का मान क्या है ?
	(b) सर्वत्र असंतत है		· · · ·
	(c) x के सभी मानों के लिए संतत है किन्तु x = nπ के लिए नहीं, जहाँ n एक पूर्णांक है	6	(a) j
	(d) x के सभी मानों के लिए संतत है किन्तु $x = n\pi/2$		(b) $y\hat{j} - x\hat{k}$
	के लिए नहीं, जहाँ n एक पूर्णांक है		(c) $y\hat{i} - x\hat{j}$
85.	अवकल समीकरण $a\left(x\frac{dy}{dx} + 2y\right) = xy\frac{dy}{dx}$ का हल		(d) $\hat{x}i - \hat{y}j$
	क्या है ?		$(\mathbf{u}) \mathbf{x}1 = \mathbf{y}\mathbf{j}$
			ni Aj
	(a) $x^2 = kye^{\frac{y}{a}}$	89.	यदि $x = t^2$, $y = t^3$, तो $\frac{d^2y}{dx^2}$ का मान क्या है ?
	(b) $yx^2 = kye^{\frac{y}{a}}$		(a) 1
	(c) $y^2x^2 = kye^{\frac{y^2}{a}}$		(b) $\frac{3}{2t}$
	(c) y x = kye (d) उपरिलिखित में से कोई नहीं		(c) $\frac{3}{4t}$
			an 3
	जहाँ k कोई अचर है ।		(d) $\frac{3}{2}$
86.	कोई सदिश \vec{b} किसी सदिश $\vec{a} = (2, 1, -1)$ का सरेख		· .
00.	है और प्रतिबंध $\vec{a} \cdot \vec{b} = 3$ को सन्तुष्ट करता है । \vec{b}		
* [*]	का मान क्या है ?		π
	(a) $(1, 1/2, -1/2)$	00	
		90.	$\int \tan^3 x dx$ का मान क्या है ?
			$\frac{-\pi}{4}$
	(c) $(1/2, 1/4, -1/4)$		(a) $\sqrt{3}$
	(d) (1, 1, 0)		(a) $\sqrt{3}$
87.	$\left(rac{1+\mathrm{i}}{1-\mathrm{i}} ight)^{\mathrm{n}}$ = 1 के लिए न्यूनतम धनात्मक पूर्णांक n क्या		(b) $\frac{1}{3}$
	\$? · · · ·		8 9
		6 X	(c) $\frac{1}{2}$
	(a) 16 (b) 12		
5 8 .	(b) 12 (c) 8		(d) 0
	(d) 4		
		l.	c
Q-0E	BA-K-NBU (25	- A)	4

91.	Let $O(0, 0, 0)$, $P(3, 4, 5)$, $Q(m, n, r)$ and $R(1, 1, 1)$ be the vertices of a parallelogram taken in order. What is the value of $m + n + r$?	00.	If the angle between the vectors \vec{a} and \vec{b} is $\frac{\pi}{3}$, what is the angle between $-5\vec{a}$ and $6\vec{b}$?
	(a) 6		6D ?
	(b) 12	9	(a) $\frac{\pi}{6}$
	(c) 15		0
	(d) More than 15		(b) $\frac{2\pi}{3}$
92.	What is the solution of the differential equation $3 e^{x} \tan y dx + (1 + e^{x}) \sec^{2} y dy = 0$?	æ	(c) $\frac{2\pi}{5}$
	(a) $(1 + e^x) \tan y = c$		(d) $\frac{3\pi}{\pi}$
×.	(b) $(1 + e^x)^3 \tan y = c$		7,
1	(c) $(1 + e^x)^2 \tan y = c$	96.	What is the degree of the differential equation
	(d) $(1 + e^x) \sec^2 y = c$		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3} = 0 ?$
	where c is a constant of integration.		$dx^2 = \sqrt{1 + (dx)} = 0$
93.	What is the locus of points, the difference of whose distances from two points being constant?		(a) 1 (b) 2
	(a) Pair of straight lines	3	(c) 3
	(b) An ellipse	e.	(d) 6
72	(c) A hyperbola		
п	(d) A parabola	97.	If $\int x^2 \ln x dx = \frac{x^3}{m} \ln x + \frac{x^3}{n} + c$, then
94.	What is the differential equation for		what are the values of m and n respectively ?
	$y^2 = 4a (x - a)$?	. ,	(a) $1/3$, $-1/9$
	(a) $yy' - 2xyy' + y^2 = 0$		(b) 3, -9
-	(b) $yy'(yy' + 2x) + y^2 = 0$		(c) 3, 9
	(c) $yy'(yy'-2x) + y^2 = 0$	10	(d) 3, 3
	(d) $yy' - 2xyy' + y = 0$		where c is a constant of integration.
			» ·

(26 – A)

91.	मान लीजिए कि O (0, 0, 0), P (3, 4, 5), Q (m, n, r) तथा R (1, 1, 1) किसी समान्तर चतुर्भुज के क्रमशः शीर्ष हैं । m + n + r का मान क्या है ?	95.	यदि सदिशों \vec{a} और \vec{b} के बीच का कोण $\frac{\pi}{3}$ है, तो - 5 \vec{a} और 6 \vec{b} के बीच का कोण क्या है ?
	(a) 6(b) 12		(a) $\frac{\pi}{6}$
	(c) 15 (d) 15 से अधिक		(b) $\frac{2\pi}{3}$
92.	अवकल समीकरण		(c) $\frac{2\pi}{5}$
2	$3 e^{x} \tan y dx + (1 + e^{x}) \sec^{2} y dy = 0$ का हल क्या है ? (a) $(1 + e^{x}) \tan y = c$		(d) $\frac{3\pi}{7}$
1	(1) (1) x^{3} to x^{3}	96.	अवकल समीकरण $\frac{d^2y}{dx^2} - \sqrt{1 + \left(\frac{dy}{dx}\right)^3} = 0$ का
	(d) (1 + e ^x) sec ² y = c जहाँ c एक समाकलन-अचर है ।		घात क्या है ? (a) 1
93.	दो बिन्दुओं से दूरियों में समान अन्तर वाले बिन्दुओं का बिन्दु-पथ क्या है ?		(b) 2 , (c) 3
	(a) सरल रेखा-युग्म		(d) 6
	(b) दीर्घवृत्त (c) अतिपरवलय	97.	यदि $\int x^2 \ln x dx = \frac{x^3}{m} \ln x + \frac{x^3}{n} + c$, तो
ar T	(d) परवलंय		m और n के मान क्रमशः क्या हैं ? (a) 1/3, -1/9
94.	$y^2 = 4a (x - a)$ के लिए अवकल समीकरण क्या है ? (a) $yy' - 2xyy' + y^2 = 0$	a:	(b) $3, -9$
	(b) $yy'(yy'+2x) + y^2 = 0$		(c) 3, 9
	(c) $yy' (yy' - 2x) + y^2 = 0$ (d) $yy' - 2xyy' + y = 0$		(d) 3, 3 जहाँ c एक समाकलन-अचर है ।

(27 – A)

		* 8 *		a a second a	
	98.	What is the principal value of $\operatorname{cosec}^{-1}(-\sqrt{2})$?	02.	What is the value of $\frac{1 + \tan 15^{\circ}}{1 - \tan 15^{\circ}}$?	2
		(a) $\frac{\pi}{4}$		(a) 1	
		(b) $\frac{\pi}{2}$	2	(b) $\frac{1}{\sqrt{2}}$	8
	а Ж.,			(c) $\frac{1}{\sqrt{3}}$	
	i t	(c) $-\frac{\pi}{4}$	•11	(d) √3	
	8 ⁸	(d) 0	03.	If $f(x) = kx^3 - 9x^2 + 9x + 3$ is monotonically	
	99.	If $f: R \rightarrow R$, $g: R \rightarrow R$ and $g(x) = x + 3$ and $(fog)(x) = (x + 3)^2$, then what is the value of $f(-3)$?		increasing in every interval, then which one of the following is correct?	•
		(a) - 9		(a) $k < 3$	11
33 242	28	(b) 0	*	(b) $k \leq 3$	* 13
		(c) 9	2	(c) $k > 3$ (d) $k \ge 3$	
i.		(d) 3			
	100.	What is the value of $\lim_{x \to 1} \frac{(x-1)^2}{ x-1 }$?	04.	If $\sin^{-1}\frac{5}{x} + \sin^{-1}\frac{12}{x} = \frac{\pi}{2}$, then what is the value of x ?	
		(a) 0	8	(a) 1	
	. *	(b) 1 (c) -1		(b) 7	
12		(d) The limit does not exist	•	(c) 13	8
: • 3				(d) 17	
	101.	A balloon is pumped at the rate of 4 cm ³ per second. What is the rate at which its surface area increases when its radius is 4 cm? (a) 1 cm ² /sec	05.	If α , β are the roots of the quadratic equation $x^2 - x + 1 = 0$, then which one of the following is correct?	
			3	(a) $(\alpha^4 - \beta^4)$ is real	
		(b) $2 \text{ cm}/\text{sec}$ (c) $3 \text{ cm}^2/\text{sec}$		(b) $2(\alpha^{5} + \beta^{5}) = (\alpha \beta)^{5}$ (c) $(\alpha^{6} - \beta^{6}) = 0$ (d) $(\alpha^{8} + \beta^{8}) = (\alpha \beta)^{8}$	
		(c) $3 \text{ cm}^2/\text{sec}$	2 2 3	(c) $(\alpha^6 - \beta^6) = 0$	
	18 21	(d) $4 \text{ cm}^2/\text{sec}$	¥ x	(d) $(\alpha^8 + \beta^8) = (\alpha \beta)^8$	
	Q-OE	BA-K-NBU (28 -)	A.)		

-	•••	· ·			
98.	, CO:	\sec^{-1} (– $\sqrt{2}$) का मुख्य मान क्या है ?	102.	$\frac{1+\tan 1}{1-\tan 1}$. <u>5°</u> का मान क्या है ? .5°
	(a)	$\frac{\pi}{4}$	10	(a) 1	а
	(b)		•	(b) $\frac{1}{\sqrt{2}}$	2
	(c)			(c) $\frac{1}{\sqrt{3}}$	3
		4		(d) √3	3
8	(d),,0 *			
99	নথ		103.		= kx ³ – 9x ² + 9x + 3 प्रत्येक अंतराल में र्धमान है, तो निम्नलिखित में से कौन सा एक सही
•	है			(a) k -	< 3
	(a			(b) k :	≤ 3
	(b (c)	2	ų	(c) k :	> 3
е. "	(t) (d			(d) k :	≥ 3
		85 w	2		
10	0. 1: ×	$\lim_{x \to 1} \frac{(x-1)^2}{ x-1 }$ का मान क्या है ?	104.	यदि sir	$n^{-1}\frac{5}{x} + \sin^{-1}\frac{12}{x} = \frac{\pi}{2}$, तो x का मान क्या
a.	(a) 0		ई ?	,
	(b) 1 .	8	(a) 1	t a
	· · (c) –1		(b) 7	е 9
	(d) सीमा का अस्तित्व नहीं है	0 5 0	(c) 13	
10		क गुब्बारा 4 cm ³ प्रति सेकण्ड की दर से फुलाया जाता		(d) 17	
		। जब इसकी त्रिज्या 4 cm है तो इसका पृष्ठीय क्षेत्रफल ज्स दर से बढ़ता है ?	105.		त समीकरण $x^2 - x + 1 = 0$ के मूल α, β हैं, लेखित में से कौन सा एक सही है ?
	(a	$1 \text{ cm}^2/\text{sec}$		(a) (α	$(4 - β^4)$ वास्तविक है
	(t			(b) 2	$(\alpha^5 + \beta_{\cdot}^5) = (\alpha \beta)^5$
	(c) 3 cm ² /sec		(c) (α	$(\beta^{6} - \beta^{6}) = 0$ $(\beta^{8} + \beta^{8}) = (\alpha \beta)^{8}$
	(d	l) 4 cm ² /sec		(d) (α	$a^{8} + \beta^{8}) = (\alpha \beta)^{8}$
612	s 1 <u>01100-</u> 000				a B

22

(29 – A)

106. What is the value of $\sqrt{3}$ cosec 20° - sec 20°? | 108. If angles A, B, C are in AP, then what is

- (a) 1/4
- . (c) 2

(b)

(d) 1

107. The probability distribution of random variable X with two missing probabilities p_1 and p_2 is given below :

X	P(X)	
1	k	
2	p ₁	
3	4k	1 N
4		
 	1	

It is further given that $P(X \le 2) = 0.25$ and $P(X \ge 4) = 0.35$.

2k

Consider the following statements :

5

- 1. $p_1 = p_2$
- 2. $p_1 + p_2 = P(X = 3)$

Which of the statements given above is/are correct ?

- (a) 1 only
- (b) 2 only
- (c) Both 1 and 2
- (d) Neither 1 nor 2

3. If angles A, B, C are in AP, then what is $\sin A + 2 \sin B + \sin C$ equal to ?

(a)
$$4 \sin B \cos^2\left(\frac{A-C}{2}\right)$$

(b)
$$4 \sin B \cos^2\left(\frac{A-C}{4}\right)$$

(c)
$$4 \sin (2B) \cos^2 \left(\frac{A-C}{2}\right)$$

(d)
$$4 \sin (2B) \cos^2 \left(\frac{A-C}{4}\right)$$

109. Statement I: If $-1 \le x < 0$, then $\cos(\sin^{-1} \hat{x}) = -\sqrt{1-x^2}$.

> Statement II : If $-1 \le x < 0$, then $\sin(\cos^{-1} x) = \sqrt{1-x^2}$.

Which one of the following is correct in respect of the above statements ?

- (a) Both statements I and II are independently correct and statement II is the correct explanation of statement I
- (b) Both statements I and II are independently correct but statement II is not the correct explanation of statement I
- (c) Statement I is correct but statement II is false
- (d) Statement I is false but statement II is correct

106. $\sqrt{3}$ cosec 20° – sec 20° का मान क्या है ?

(b) 4

(a) 1/4

(c)

(d) 1

2

107. किसी यादृच्छिक चर X का प्रायिकता बंटन, जिसमें से दो प्रायिकताएँ p_1 और p_2 अनुपस्थित हैं, नीचे दिया गया है :

	1.1
X	P(X)
1	k
· 2 ·	p ₁
3	4k
4	p ₂
5	, 2k

इसके अतिरिक्त यह भी दिया हुआ है कि $P(X \le 2) = 0.25$ तथा $P(X \ge 4) = 0.35$.

निम्नलिखित कथनों पर विचार कीजिएः

- 1. $p_1 = p_2$
- 2. $p_1 + p_2 = P(X = 3)$

उपरिलिखित कथनों में से कौन सा/से सही है/हैं ?

- (a) केवल 1
- (b) केवल 2
- (c) 1 और 2 दोनों
- (d) न तो 1 और न ही 2

108. यदि कोण A, B, C समान्तर श्रेणी में हैं, तो sin A + 2 sin B + sin C का मान क्या है ?

(a)
$$4 \sin B \cos^2\left(\frac{A-C}{2}\right)$$

(b)
$$4 \sin B \cos^2\left(\frac{A-C}{4}\right)$$

- (c) $4 \sin (2B) \cos^2 \left(\frac{A-C}{2}\right)$
- (d) 4 sin (2B) $\cos^2\left(\frac{A-C}{4}\right)$
- **109.** *कथन I* : यदि −1 ≤ x < 0, तो $\cos(\sin^{-1} x) = -\sqrt{1-x^2}$.
 - कथन II : यदि $-1 \le x < 0$, तो sin (cos⁻¹ x) = $\sqrt{1-x^2}$.

निम्नलिखित में से कौन सा एक, उपरिलिखित कथनों के विषय में सही है ?

- (a) दोनों कथन I और II स्वतंत्रतः सही हैं और कथन II, कथन I की सही व्याख्या है
- (b) दोनों कथन I और II स्वतंत्रतः सही हैं किन्तु कथन II, कथन I की सही व्याख्या नहीं है

(c) कथन I सही है किन्तु कथन II असत्य है

(d) कथन I असत्य है किन्तु कथन II सही है ्

(31 - A)

110.	Stat	ement I: $y = -\tan^{-1}(x^{-1}) + 1$ is an increasing function of x.	112.	Let a, b, c be in AP. Consider the following statements :
		ement $II: \frac{dy}{dx}$ is positive for all values of x. ch one of the following is correct in		1. $\frac{1}{ab}$, $\frac{1}{ca}$, $\frac{1}{bc}$ are in AP.
		ect of the above statements ? Both statements I and II are		2. $\frac{1}{\sqrt{b} + \sqrt{c}}$, $\frac{1}{\sqrt{c} + \sqrt{a}}$, $\frac{1}{\sqrt{a} + \sqrt{b}}$ are in AP.
	8 	independently correct and statement II is the correct explanation of statement I		Which of the statements given above is/are correct?
*		а. С		(a) 1 only
	(b)	Both statements I and II are independently correct but statement II is not the correct explanation of statement I	x x	(b) 2 only
				(c) Both 1 and 2
92 4	(c)	Statement I is correct but statement II is false	*	(d) Neither 1 nor 2
и 11	(d) ●	Statement I is false but statement II is correct	113.	What is the differentiation of $\log_x x$ with respect to $ln x$?
111.	resp	sider the following statements in ect of circles $x^2 + y^2 - 2x - 2y = 0$ $x^2 + y^2 = 1$:		(a) 0(b) 1
	I. ,	The radius of the first circle is twice that of the second circle.		(c) 1/x
5 10 10 10 10 10 10 10 10 10 10 10 10 10	2.	Both the circles pass through the origin.	•	(d) x
	Whie corre	ch of the statements given above is/are ect ?	114. _.	What is $\tan\left(7\frac{1}{2}^{\circ}\right)$ equal to ?
	(a)	1 only		(a) $\sqrt{6} + \sqrt{3} - \sqrt{2} + 2$
	(b)	2 only		(b) $\sqrt{6} + \sqrt{3} + \sqrt{2} + 2$ (c) $\sqrt{6} - \sqrt{3} + \sqrt{2} - 2$ (d) $\sqrt{6} + \sqrt{3} + \sqrt{2} - 2$
	(c)	Both 1 and 2		(c) $\sqrt{6} - \sqrt{3} + \sqrt{2} - 2$
	(d)	Neither 1 nor 2	12	(d) $\sqrt{6} + \sqrt{3} + \sqrt{2} - 2$
Q-OEI	ВА-К	-NBU (32 –	A)	

.

						100).• 	25	
110.	कथन ।		y = – tan ^{–1} (x [–] फलन है ।	¹) + 1, x का एव	क्त वर्धमान	2.5		तीजिए कि a, b, c समान्तर श्रेणी में हैं । लेखित कथनों पर विंचार कीजिए :
	कथन ।	II :	x के सभी मानों वे	ि लिए $rac{\mathrm{dy}}{\mathrm{dx}}$ धनात	मक है ।	1990 19		$\frac{1}{ab}, \frac{1}{ca}, \frac{1}{bc}$ समान्तर श्रेणी में हैं ।
		नखितं में सही	में से कौन सा एव है ?	क, उपरिलिखित	कथनों के			$\frac{1}{\sqrt{b} + \sqrt{c}}, \frac{1}{\sqrt{c} + \sqrt{a}}, \frac{1}{\sqrt{a} + \sqrt{b}}$ समान्तर श्रेणी में हैं ।
ت			ज्थन I और II, कथन I की स		पे हैं तथा		उंपर्रि	लेखित कथनों में से कौन सा/से सही है/हैं ?
				16 - S	1		(a)	केवल 1
	(b)		त्रथन I और] II, कथन I की स	1	1975) 1975		(b)	केवल 2
					3		(c)	1 और 2 दोनों
	(c)	कथन	I सही है किन्तु व	व्यन II असत्य व	4		(d)	न तो 1 और न ही 2
	(d)	कथन	I असत्य है किंन्तु	कथन II सही	है ्रे	113.	ln x	के सापेक्ष log _x x का अवकलन क्या है ?
-			3				(a)	0
111.			7 ² – 2x – 2y = नलिखित कथनों पर				(b) [.]	2.
e	1.	प्रथम है ।	वृत्त की त्रिज्या दूस	रे वृत्त की त्रिज्या	की दुगुनी	•	(c) (d)	1/x x
	2.	दोनों ।	वृत्त मूलबिन्दु से गुः	जरते हैं ।	÷	114.	tan	$\left(7\frac{1}{2}^{\circ}\right)$ का मान क्या है ?
я.	उपरिति	लेखित	कथनों में से कौन	सा/से सही है/हैं	?	5	(a)	$\sqrt{6} + \sqrt{3} - \sqrt{2} + 2$;
•	(a)	केवल	1	72.	<i>ž</i>		(b)	$\sqrt{6} + \sqrt{3} + \sqrt{2} + 2$
	(b)	केवल	2	,			(0)	
	(c)	1 और	१ 2 दोनों		22	2	(0)	$\sqrt{6} - \sqrt{3} + \sqrt{2} - 2$ $\sqrt{6} + \sqrt{3} + \sqrt{2} - 2$
	(d)	न तो	1 और न ही 2				(d)	$\sqrt{6} + \sqrt{3} + \sqrt{2} - 2$
15. 2010-0 - 010-0								1

(33 – A)

ì

Q-OEBA-K-NBU

			2. 2		· · · · · · · · · · · · · · · · · · ·
	115.	Wha	t is the value of $\frac{\cos 15^\circ + \cos 45^\circ}{\cos^3 15^\circ + \cos^3 45^\circ}$?	118.	What is the angle between the diagonal of one of the faces of the cube and the
	N.	(a)	$\frac{1}{4}$		diagonal of the cube intersecting the diagonal of the face of the cube ?
. 65		(b)	$\frac{1}{2}$		(a) $\cos^{-1}(1/\sqrt{3})$
το. Ř		(c)	1		(b) $\cos^{-1}(2/\sqrt{3})$
		(0)	$\frac{1}{3}$		(c) $\cos^{-1}(\sqrt{2}/3)$
		(d)	None of the above		(d) $\cos^{-1}(\sqrt{2}/3)$
	Dire follo		is : For the next 3 (three) questions to	119.	Let \vec{a} and \vec{b} be two unit vectors and α be
20 55	9	(0, 2	vertices of a cube are (0, 0, 0), (2, 0, 0), , 0), (0, 0, 2), (2, 2, 0), (2, 0, 2), (0, 2, 2), , 2) respectively.		the angle between them. If $(\vec{a} + \vec{b})$ is also the unit vector, then what is the value of α ?
-	11 <u>6</u> . '		t is the angle between any two diagonals e cube ?		(a) $\frac{\pi}{4}$
ň	58	(a)	$\cos^{-1}(1/2)$		(b) $\frac{\pi}{3}$.
	*	(b)	$\cos^{-1}(1/3)$		(c) $\frac{2\pi}{3}$
		(c)	$\cos^{-1}(1/\sqrt{3})$		· · ·
· ,	3.4)	(d)	$\cos^{-1}(2/\sqrt{3})$		(d) $\frac{\pi}{2}$
58 58	117.	the	t is the angle between one of the edges of cube and the diagonal of the cube secting the edge of the cube ?	120.	What is the value of $\frac{(0.101)_2^{(11)_2} + (0.011)_2^{(11)_2}}{(0.101)_2^{(10)_2} - (0.101)_2^{(01)_2} (0.011)_2^{(01)_2} + (0.011)_2^{(10)_2}}?$
<i>x</i> i		;(a)	$\cos^{-1}(1/2)$		(a) $(0.001)_2$
		(b)	$\cos^{-1}(1/3)$		(b) $(0.01)_2$
		(c)	$\cos^{-1}(1/\sqrt{3})$		(c) $(0.1)_{2}$
	•	(d)	$\cos^{-1}(2/\sqrt{3})$		(d) (1) ₂
(Q-0E	ВА-К	NBU (34 -	- A)	

ļ

 \mathbf{n}^{in}

٦

10 B

4

;

3

î.

•

ł		8		
	115.	$\frac{\cos 15^\circ + \cos 45^\circ}{\cos^3 15^\circ + \cos^3 45^\circ}$ का मान क्या है ?	118.	धन के एक पार्श्व के विकर्ण तथा घन के पार्श्व के विकर्ण को काटने वाले घन के विकर्ण के बीच का कोण क्या है ?
		(a) $\frac{1}{4}$		(a) $\cos^{-1}(1/\sqrt{3})$
	,	(b) $\frac{1}{2}$		(b) $\cos^{-1}(2/\sqrt{3})$
0	н. К	(c) $\frac{1}{3}$		(c) $\cos^{-1}(\sqrt{2/3})$ (d) $\cos^{-1}(\sqrt{2/3})$
		(d) उपरिलिखित में से कोई नहीं	119.	मान लीजिए कि \vec{a} और \vec{b} दो मात्रक सदिश हैं और α
	निर्देश	ः अगले 3 (तीन) प्रश्नों के लिएः		उनके बीच का कोण है । यदि (बे + b) भी मात्रक सदिश है, तो α का मान क्या है ?
		किसी घन के शीर्ष क्रमशः (0, 0, 0), (2, 0, 0), (0, 2, 0), (0, 0, 2), (2, 2, 0), (2, 0, 2), (0, 2, 2), (2, 2, 2) हैं ।		(a) $\frac{\pi}{4}$
	116.	धन के किन्हीं दो विकर्णों के बीच का कोण क्या है ?		(b) $\frac{\pi}{3}$
8		(a) $\cos^{-1}(1/2)$		(c) $\frac{2\pi}{3}$
		(b) $\cos^{-1}(1/3)$		
		(c) $\cos^{-1}(1/\sqrt{3})$		(d) $\frac{\pi}{2}$
	.*.	(d) $\cos^{-1}(2/\sqrt{3})$	120.	$\frac{(0.101)_2^{(11)_2} + (0.011)_2^{(11)_2}}{(0.101)_2^{(10)_2} - (0.101)_2^{(01)_2} (0.011)_2^{(01)_2} + (0.011)_2^{(10)_2}}$
e.	117.	. घन की किसी भुजा और घन की भुजा को काटने वाले घन के विकर्ण के बीच का कोण क्या है ?		(0:101) ₂ ¹ / ₂ = (0:101) ₂ ¹ / ₂ (0:011) ₂ ¹ / ₂ + (0:011) ₂ ¹ / ₂ का मान क्या है ?
		(a) $\cos^{-1}(1/2)$		(a) $(0.001)_2$
	•	(b) $\cos^{-1}(1/3)$		(b) $(0.01)_2$
	5	(c) $\cos^{-1}(1/\sqrt{3})$		(c) $(0.1)_2$
		(d) $\cos^{-1}(2/\sqrt{3})$		(d) (1) ₂
				2

14

(35 - A)

Q-OEBA-K-NBU

(36 - A)

Q-OEBA-K-NBU

(37 – A)

Q-OEBA-K-NBU

Q-OEBA-K-NBU

(39 – A)

जब तक आपको यह परीक्षण पुस्तिका खोलने को न कहा जाए तब तक न खोलें

टी.बी.सी. : Q-OEBA-K-NBU

परीक्षण पुस्तिका

गणित

समय ः दो घण्टे और तीस मिनट

ंपूर्णांक : 300

अनुदेश

- परीक्षा प्रारम्भ होने के तुरन्त बाद, आप इस परीक्षण पुस्तिका की पड़ताल अवश्य कर लें कि इसमें कोई बिना छपा, फटा या छूटा हुआ पृष्ठ अथवा प्रश्नांश आदि न हो । यदि ऐसा है, तो इसे सही परीक्षण पुस्तिका से बदल लीजिए ।
- 2. उत्तर-पत्रक में सही स्थान पर परीक्षण पुस्तिका अनुक्रम A, B, C या D यथास्थिति स्पष्ट रूप से कूटबद्ध कीजिए ।
- 3. इस परीक्षण पुस्तिका पर साथ में दिए गए कोष्ठक में आपको अपना
- · अनुक्रमांक लिखना है । परीक्षण पुस्तिका पर और कुछ न लिखें ।
- 4. इस परीक्षण पुस्तिका में 120 प्रश्नांश (प्रश्न) दिए गए हैं । प्रत्येक प्रश्नांश हिन्दी और अंग्रेजी में छपा है । प्रत्येक प्रश्नांश में चार प्रत्युत्तर (उत्तर) दिए गए हैं । इनमें से एक प्रत्युत्तर को चुन लें जिसे आप उत्तर-पत्रक पर अकित करना चाहते हैं । यदि आपको ऐसा लगे कि एक से अधिक प्रत्युत्तर सही हैं तो उस प्रत्युत्तर को अंकित करें जो आपको सर्वोत्तम लगे । प्रत्येक प्रश्नांश में प्रश्नांश के लिए केवल एक ही प्रत्युत्तर चुनना है ।
- 5. आपको अपने सभी प्रत्युत्तर अलग से दिए गए उत्तर-पत्रक पर ही अंकित करने हैं । उत्तर-पत्रक में दिए गए निर्देश देखिए ।
- 6. सभी प्रश्नाशों के अंक समान हैं ।
- 7. इससे पहले कि आप परीक्षण पुस्तिका के विभिन्न प्रश्नांशों के प्रत्युत्तर उत्तर-पत्रक पर अंकित करना शुरू करें, आपको प्रवेश प्रमाण-पत्र के साथ प्रेषित अनुदेशों के अनुसार कुछ विवरण उत्तर-पत्रक में देने हैं।
- 8. आप अपने सभी प्रत्युत्तरों को उत्तर-पत्रक में भरने के बाद तथा परीक्षा के समापन पर केवल उत्तर-पत्रक अधीक्षक को सौंप दें । आपको अपने साथ परीक्षण पुस्तिका ले जाने की अनुमति है ।
- 9. कच्चे काम के लिए पत्रक परीक्षण पुस्तिका के अंत में संलग्न हैं !

10. गलत उत्तरों के लिए दण्ड :

वस्तुनिष्ठ प्रश्न-पत्रों में उम्मीदवार द्वारा दिए गए गलत उत्तरों के लिए दण्ड दिया जाएगा ।

- (i) प्रत्येक प्रश्न के लिए चार वैकल्पिक उत्तर हैं । उम्मीदवार द्वारा प्रत्येक प्रश्न के लिए दिए गए एक गलत उत्तर के लिए प्रश्न हेतू नियत किए गए अंकों का एक-तिहाई (0.33) दण्ड के रूप में काटा जाएगा ।
- (ii) यदि कोई उम्मीदवार एक से अधिक उत्तर देता है, तो इसे गलत उत्तर माना जाएगा, यद्यपि दिए गए उत्तरों में से एक उत्तर सही होता है, फिर भी उस प्रश्न के लिए उपर्युक्तानुसार ही उसी तरह का दण्ड दिया जाएगा ।
- (iii) यदि उम्मीदवार द्वारा कोई प्रश्न हल नहीं किया जाता है, अर्थात् उम्मीदवार द्वारा उत्तर नहीं दिया जाता है, तो उस प्रश्न के लिए **कोई दण्ड नहीं** दिया जाएगा ।

जब तक आपको यह परीक्षण पुस्तिका खोलने को न कहा जाए तब तक न खोलें 🗉

Note : English version of the instructions is printed on the front cover of this Booklet.